PANDAS CHEAT SHEET -

"The Poster of Pandas!"
ITERATIVE

MAPPED

VECTORIZED NOTES

Arithmetic Basic operations for i, row in test df.iterrows test df[“dest col”] = test df[“int col”].apply(lambda x: x + 5) test df[“dest col”] = test df[“dest_col”] +
test df.loc[i, “int_col” test df[“dest col”] = test df[“int col”] map(lambda x: x + 5) test df[“dest_col”] +=
Common functions for i, row in test df.iterrows(): test _df[“dest col”] = test df[“float col”].apply(lambda x: math.ceil (x)) test df[“dest col”] = np round(df[“float_col”], 2)
. test df.loc[i, “dest col”] = (
(floor /ceil /round / ;;th.floor(test_;f.loc[i, “float_col”])) test _df[“dest col”] = test df[“float col”].apply(math.floor) test df[“dest col”] = np.ceil(df[“int col”])
power, etc) 4EX 2 dox 2
test df[“dest col”] = test df[“int col”].apply(lambda x: math pow(x, 2)) test df[“dest col”] = test df[“int col”] *¥*
sum val = # Since these form of aggregation functions fundamentally have cross- min val = df[“int_col 1”].min() * Most of the vectorized functions take common optional arguments:
average val = # row dependencies, there is no real map() / apply() equivalent, sum val = df[“int col 1”].sum() - axis - 0 or 1 toindicate "Across rows (1) or columns (0, default)"
min val = None # without extremely contrived examples (E.g. using a lambda function average val = df[“int_col_1”] .mean() - skipna (bool to skip NaN values) (default True)
that references a 'global' variable external to it.) - numeric_only
Simple aggregations for i, row in test df.iterrows(): #You can also get a series of mins / maxes /etc across multiple
sum val += row[“int_col 17] # columns by df[["coll”, '"col2”, "col3”]].min(), which will return
average val = float(sum val) / float(i) # a series of 3 values - the min of each column listed. Calling min()
if min val is None or row[“int col 1”] < min val: # again would result in the min of those 3 values.
min val = row[“int col 1”]
Stﬁng Canitali for i, row in test df.iterrows(): test df[“dest col”] = test df[“str col”].apply(lambda x: x.capitalize()) test _df[“dest col”] = test df[“str col”].str.capitalize() o '
apitalize, replace,) * Replace can also take a dictionary input, or use regexes
Operations etc. ek Gho eI [y MU e = # Ex 2 * You can call replace() on the dataframe itself to replace ALL instances of a value
test df[i, “str name”].capitalize())) test _df[“dest_col”] = (test df[“dest col”] = test df[“str_col”].str.replace(“orig”, “new_text”) across any columns
test df[“str col”].apply(lambda x: x.replace(“orig”, “new_text”)))
matching rows = list() test df[“matches”] = test df[“int col”].apply(lambda x: True bool map matches = (df[“int_col”] < 5)
Boolean Find rows wherecol for i, row in test df.iterrows(): if x < else False)
Operations <5 if (test_df.loc[i, “int col”] <):

matching rows.append (i)

Find rows where Col

matching rows = list()

for i, row in test df.iterrows():

test _df[“matches”] = test_df.apply(

lambda row: True if row[“a”] >

bool map matches = ((df[“a”] >) & (dE["D”] < 5))

* Boolean maps can be combined via boolean operators such as &, |, ~
* "axis="tells apply() to operate on columns (default/ 0), or rows (axis=1). When

A>10and ColB<5 if (rowlra”l > e | RS) and row["b"] < O L operating on a row, all columns in the row are acessable
matching rows.append (i) axis=1)
#Find any rows with integer values > 5 in one of 3 columns #Ex 1 - Any Greater than 5 #Any value in row > 5
#Similar variants for All > 5 etc. df[“any gt 5”] = df.apply(lambda row: any(row[col] > df[“any gt 5”] = (df[[“int_cl”, “int c2”, “int ¢3”]] > 5).any(axis=1)
matching row nums = list() for col in [“int_cl”, “int c2”, “int c37]),
axis=1) #Value is in set (using isin)
for i, row in df.iterrows(): df[“val_in set”] = df[“val_to_check”].isin(list_vals_to match)
if row[“int cl”] > or row[“int c2”] > or row[“int c3”] > #Ex2
Boolean - - -

aggregations (any....
All...inset... etc.)

matching row nums.append (i)

#Ex 2 - Check if a value is contained in a set
rows w_val in set = list()
for i, row in df.iterrows():
if row[“val_to check”] in list vals to match:

rows_w_val in set.append (i)

df[“val_in set”] = \
df[“val_to_check”].apply(lambda x: x in list vals_ to_match)

#BONUS :
df[“val between 3 7”] = df[“val_to_check”] .between (3,
#Equivalent to (df[“val to check”] >= 3) & (df[“val to check”] <= 7)

Between values (inclusive) * between() includes the endpoints by default, add "inclusive=False" to exlcude

) them.

Conditional Perform a

for i, row in test df.iterrows():

if (test_df.at[i, “int col”] <) :

test _df[“dest col”] = test df["“int col”].apply(lambda x:

if x < else x)

test df.loc[test_df[“int_col”] < 5, “dest col”] =
test df.loc[test_df[“int_col”] >= 5, “dest col”] = (
test _df.loc[test_df[“int_col”] >= 5, “int col”])

Updates conditional calc test_df.at[i, “dest col”] = # OR, EVEN BETTER:
else: test _df[“dest col”] = np.where(test_df[“int_col”] < 5, O,
test df.at[i, “dest_col”] = test_df.loc[i, “int col”] test df[“int col”)
for i, row in test df.iterrows(): def categorize (x) : conditions = [
if row[“int _col”] < if x < df[“int_col”] < 0
test df.at[i, “dest_col”] = “Low” return “Low” (df[“int_col”] >=) & (df[“int_col”] <),
elif row[“int col”] < elif x < (df[“int_col”] >=) & (df[“int_col”] <),
Conditional calc with test df.at[i, “dest col”] = “Medium” return “Medium” df[“int_col”] >=
multiple elif row[“int col”] < elif x <] .*Select() takes a list of boolean. maps as inputs 1,. and a list of replacement values as
- input 2, and returns a column with values subbed in for matching rows.
replacement values test df.at[i, “dest_col”] = “High” return “High” choices = [“Low”, “Medium”, “High”, “Critical”]
else: else: df[“dest col”] = np.select(conditions, choices, default='Unknown')
test df.at[i, “dest_col”] = “Critical” return “Critical”
df[“dest _col”] = df[“int col”].apply(categorize)
E#Given a dictionary, severity weights, mapping text keys (e.g. #Given a dictionary, severity weights, mapping text keys (e.g. #Given a dictionary, severity weights, mapping text keys (e.g.
Conditional calc with E#"High", "Medium") to numeric values (e.g 4, 3) called #"High", "Medium") to numeric values (e.g 4, 3) called #"High'", "Medium") to numeric values (e.g 4, 3) called
multiple # 'severity weight dict' # 'severity weight dict' # 'severity weight dict’ * replace can operate on a whole row or column, a whole dataframe, or anything in
rep@cewmntvaMes-lfor i, row in df.iterrows(): between.
example 2 severity text = row[“severity”] df [“severity weight”] = df[“severity”].apply(\ df [“sev_weight”] = df["“sev_text”] replace(severity weight dict)
df.at[i, “severity weight”] = severity weight dict[severity text] lambda x: severity weight dict[x])
i# Below is a little contrived as it's assuming we want to end up with a #Any examples here are fairly contrived and fundamentally fall result df = df.groupby(“risk label”) [“risk value”].sum() * Great Ex: : https://www.geeksforgeeks.org/python-pandas-dataframe-groupby/
E# dataframe in the end- might be more natural to update a dictionary. # through to a vecroeized approach under the hood. - e.g. * Group by multiple columns as well - groupby([col1, col2])
Create sums by a Iissue_types = [“DataIssue”, “ConfigIssue”, “LogicIssue”] # # example 2: * Common groupby sub-functions:
Aggregation grouped value - result df = pd.DataFrame(“issue_ type”: issue_types, #def sum_group (group df) : result df2 = df.groupby(“issue type”) .count() - sum, mean, min, max
/ grouping similar to a database “num_issues”: [0, 0, 0]) # return group df['value'].sum() -count
GROUPBY for index, row in test df.iterrows(): # # Example 3: - agg - multiple aggregations on different columns, as specified in inputs
result df.loc[result df[“issue type”] == row[“issue type”], #result df = (df.groupby (“department”) .agg(Total Issues=("issue id", "count"), . . .
- - - “num_i;sues"] += df.groupby ('group') .apply (sum_group) .reset_index (name='sum')) Agg_RIsk_Rating=(“ri;k_value”, "sum")) -first - returns the firstitem in the group
#See Note Above #See Note Above # Rows for teams where the sum of risk val of those rows would be >= 1000
Filter a grouped DF result df = éoRL(ljcﬁ: ;illom:?/m: afilter() or transform() and filter() to gte similar results to SQLs
df.groupby (“team”) .filter (lambda x: x[“risk value”].sum() >=))
#Iterative approaches to this problem only make sense if you're selecting # There is no real "apply()'" or map() equivalent. You can use functions #Make a dataframe with only columns int cl, int c2, and float cl
Filtering / Subframe withonly # columns based on calculations, etc. - e.g. something like # like filter() in a similar fashion though: # from the source dataframe df
Subframes selected columns risk cols = [col for col in df.columns if col.startswith('risk ')] new_df = df.filter(regex='"risk_')

new _df = df[risk cols]

sub df = df[[“int _cl”, ”int c2”, ”“int c3”, “float cl”]]

Taking a Sub-frame
with only rows
matching certain
conditions

Assume we have a list result() that we're using
for i, row in test df.iterrows():

if <= row[“int_coll”] <= and row[“int_col2”] >
result.append (row)

filtered df = pd.DataFrame (result)

This is pretty contrived, but..
filtered df = test df[test df.apply(lambda row: <= row[“int_coll”] <=
and row[“int_col2”] >

axis=1l)]

4

mask = ((df[“coll”] >= 20) & (df[“coll”] <= 50) & (df[“int col2”] > 70))

filtered df = test df[mask]
- - * Basically, passing a boolean series mask to a dataframe’s [] gives a filtered

Or one of the below (each slightly slower but more readable) L
dataframe containing the rows where the boolean mask was True

new_df = df[(df[“coll”] .between (20,)) & (df[“int col2”] >)1
filtered df = df.query("20 <= int _coll <= 50 and int col2 > 70")

