
ITERATIVE MAPPED VECTORIZED NOTES

Arithmetic Basic operations for i, row in test_df.iterrows(): test_df[“dest_col”] = test_df[“int_col”].apply(lambda x: x + 5) test_df[“dest_col”] = test_df[“dest_col”] + 5

 test_df.loc[i, “int_col”] += 5 test_df[“dest_col”] = test_df[“int_col”].map(lambda x: x + 5) test_df[“dest_col”] += 5

Common functions for i, row in test_df.iterrows(): test_df[“dest_col”] = test_df[“float_col”].apply(lambda x: math.ceil(x)) test_df[“dest_col”] = np.round(df[“float_col”], 2)

 test_df.loc[i, “dest_col”] = (

 math.floor(test_df.loc[i, “float_col”])) test_df[“dest_col”] = test_df[“float_col”].apply(math.floor) test_df[“dest_col”] = np.ceil(df[“int_col”])

#EX 2 : #ex 2

test_df[“dest_col”] = test_df[“int_col”].apply(lambda x: math.pow(x, 2)) test_df[“dest_col”] = test_df[“int_col”] ** 2

sum_val = 0 # Since these form of aggregation functions fundamentally have cross- min_val = df[“int_col_1”].min() * Most of the vectorized functions take common optional arguments:
average_val = 0.0 # row dependencies, there is no real map() / apply() equivalent, sum_val = df[“int_col_1”].sum() - axis - 0 or 1 to indicate "Across rows (1) or columns (0, default)"
min_val = None # without extremely contrived examples (E.g. using a lambda function average_val = df[“int_col_1”].mean() - skipna (bool to skip NaN values) (default True)

that references a 'global' variable external to it.) - numeric_only
for i, row in test_df.iterrows(): #You can also get a series of mins / maxes /etc across multiple

 sum_val += row[“int_col_1”] # columns by df[["col1”, "col2”, "col3”]].min(), which will return

 average_val = float(sum_val) / float(i) # a series of 3 values - the min of each column listed. Calling min()

 if min_val is None or row[“int_col_1”] < min_val: # again would result in the min of those 3 values.

 min_val = row[“int_col_1”]

for i, row in test_df.iterrows(): test_df[“dest_col”] = test_df[“str_col”].apply(lambda x: x.capitalize()) test_df[“dest_col”] = test_df[“str_col”].str.capitalize()

 test_df.loc[i, “dest_name”] = (# Ex 2

 test_df[i, “str_name”].capitalize())) test_df[“dest_col”] = (test_df[“dest_col”] = test_df[“str_col”].str.replace(“orig”, “new_text”)

 test_df[“str_col”].apply(lambda x:.x.replace(“orig”, “new_text”)))

matching_rows = list() test_df[“matches”] = test_df[“int_col”].apply(lambda x: True bool_map_matches = (df[“int_col”] < 5)

for i, row in test_df.iterrows(): if x < 5 else False)

 if (test_df.loc[i, “int_col”] < 5):

 matching_rows.append(i)

matching_rows = list() test_df[“matches”] = test_df.apply(bool_map_matches = ((df[“a”] > 10) & (df[“b”] < 5))

for i, row in test_df.iterrows(): lambda row: True if row[“a”] > 10

 if (row[“a”] > 10 and row[“b”] < 5): and row[“b”] < 5 else False,

 matching_rows.append(i) axis=1)

#Find any rows with integer values > 5 in one of 3 columns #Ex 1 - Any Greater than 5 #Any value in row > 5

#Similar variants for All > 5 etc. df[“any_gt_5”] = df.apply(lambda row: any(row[col] > 5 df[“any_gt_5”] = (df[[“int_c1”, “int_c2”, “int_c3”]] > 5).any(axis=1)

matching_row_nums = list() for col in [“int_c1”, “int_c2”, “int_c3”]),

 axis=1) #Value is in set (using isin)

for i, row in df.iterrows(): df[“val_in_set”] = df[“val_to_check”].isin(list_vals_to_match)

 if row[“int_c1”] > 5 or row[“int_c2”] > 5 or row[“int_c3”] > 5: #Ex2

 matching_row_nums.append(i) df[“val_in_set”] = \ #BONUS: Between values (inclusive)

 df[“val_to_check”].apply(lambda x: x in list_vals_to_match) df[“val_between_3_7”] = df[“val_to_check”].between(3, 7)

#Ex 2 - Check if a value is contained in a set #Equivalent to (df[“val_to_check”] >= 3) & (df[“val_to_check”] <= 7)

rows_w_val_in_set = list()

for i, row in df.iterrows():

 if row[“val_to_check”] in list_vals_to_match:

 rows_w_val_in_set.append(i)

test_df[“dest_col”] = test_df[“int_col”].apply(lambda x: 0 test_df.loc[test_df[“int_col”] < 5, “dest_col”] = 0

for i, row in test_df.iterrows(): if x < 5 else x) test_df.loc[test_df[“int_col”] >= 5, “dest_col”] = (

 if (test_df.at[i, “int_col”] < 5): test_df.loc[test_df[“int_col”] >= 5, “int_col”])

 test_df.at[i, “dest_col”] = 0 # OR, EVEN BETTER:

 else: test_df[“dest_col”] = np.where(test_df[“int_col”] < 5, 0,

 test_df.at[i, “dest_col”] = test_df.loc[i, “int_col”] test_df[“int_col”)

for i, row in test_df.iterrows(): def categorize(x): conditions = [

 if row[“int_col”] < 25: if x < 25: df[“int_col”] < 25,

 test_df.at[i, “dest_col”] = “Low” return “Low” (df[“int_col”] >= 25) & (df[“int_col”] < 50),

 elif row[“int_col”] < 50: elif x < 50: (df[“int_col”] >= 50) & (df[“int_col”] < 75),

 test_df.at[i, “dest_col”] = “Medium” return “Medium” df[“int_col”] >= 75

 elif row[“int_col”] < 75: elif x < 75:]

 test_df.at[i, “dest_col”] = “High” return “High” choices = [“Low”, “Medium”, “High”, “Critical”]

 else: else: df[“dest_col”] = np.select(conditions, choices, default='Unknown')

 test_df.at[i, “dest_col”] = “Critical” return “Critical”

df[“dest_col”] = df[“int_col”].apply(categorize)

#Given a dictionary, severity_weights, mapping text keys (e.g. #Given a dictionary, severity_weights, mapping text keys (e.g. #Given a dictionary, severity_weights, mapping text keys (e.g.

#"High", "Medium") to numeric values (e.g 4, 3) called #"High", "Medium") to numeric values (e.g 4, 3) called #"High", "Medium") to numeric values (e.g 4, 3) called

'severity_weight_dict' # 'severity_weight_dict' # 'severity_weight_dict'

for i, row in df.iterrows():

 severity_text = row[“severity”] df[“severity_weight”] = df[“severity”].apply(\ df[“sev_weight”] = df[“sev_text”].replace(severity_weight_dict)

 df.at[i, “severity_weight”] = severity_weight_dict[severity_text] lambda x: severity_weight_dict[x])

Below is a little contrived as it's assuming we want to end up with a #Any examples here are fairly contrived and fundamentally fall result_df = df.groupby(“risk_label”)[“risk_value”].sum() * Great Ex: : https://www.geeksforgeeks.org/python-pandas-dataframe-groupby/
dataframe in the end- might be more natural to update a dictionary. # through to a vecroeized approach under the hood. - e.g. * Group by multiple columns as well - groupby([col1, col2])
issue_types = [“DataIssue”, “ConfigIssue”, “LogicIssue”] # # example 2: * Common groupby sub-functions:
result_df = pd.DataFrame(“issue_type”: issue_types, #def sum_group(group_df): result_df2 = df.groupby(“issue_type”).count() - sum, mean, min, max
 “num_issues”: [0, 0, 0]) # return group_df['value'].sum() - count
for index, row in test_df.iterrows(): # # Example 3: - agg - multiple aggregations on different columns, as specified in inputs

 result_df.loc[result_df[“issue_type”] == row[“issue_type”],
 “num_issues”] += 1

#result_df = (
 df.groupby('group').apply(sum_group).reset_index(name='sum'))

df.groupby(“department”).agg(Total_Issues=("issue_id", "count"),
 Agg_Risk_Rating=(“risk_value”, "sum")) - first - returns the first item in the group

#See Note Above #See Note Above # Rows for teams where the sum of risk_val of those rows would be >= 1000

result_df = (

 df.groupby(“team”).filter(lambda x: x[“risk_value”].sum() >= 1000))

#Iterative approaches to this problem only make sense if you're selecting # There is no real "apply()" or map() equivalent. You can use functions #Make a dataframe with only columns int_c1, int_c2, and float_c1

columns based on calculations, etc. - e.g. something like # like filter() in a similar fashion though: # from the source dataframe df

risk_cols = [col for col in df.columns if col.startswith('risk_')] new_df = df.filter(regex='^risk_')

new_df = df[risk_cols] sub_df = df[[“int_c1”, ”int_c2”, ”int_c3”, ”float_c1”]]

Assume we have a list result() that we're using # This is pretty contrived, but… mask = ((df[“col1”] >= 20) & (df[“col1”] <= 50) & (df[“int_col2”] > 70))

for i, row in test_df.iterrows(): filtered_df = test_df[test_df.apply(lambda row: 20 <= row[“int_col1”] <= 50 filtered_df = test_df[mask]

 if 20 <= row[“int_col1”] <= 50 and row[“int_col2”] > 70: and row[“int_col2”] > 70, # Or one of the below (each slightly slower but more readable)

 result.append(row) axis=1)] new_df = df[(df[“col1”].between(20, 50)) & (df[“int_col2”] > 70)]

filtered_df = pd.DataFrame(result) filtered_df = df.query("20 <= int_col1 <= 50 and int_col2 > 70")

PANDAS CHEAT SHEET - "The Poster of Pandas!"

(floor / ceil / round /
power, etc)

Simple aggregations

Capitalize, replace,
etc.

String
Operations

Find rows where Col
A >10 and Col B < 5

Boolean
Operations

Find rows where col
< 5

Conditional calc with
multiple

replacement values -
example 2

Conditional calc with
multiple

replacement values

* between() includes the endpoints by default, add "inclusive=False" to exlcude
them.

Conditional
Updates

Perform a
conditional calc

Boolean
aggregations (any….

All … in set… etc.)

* Basically, passing a boolean series mask to a dataframe's [] gives a filtered
dataframe containing the rows where the boolean mask was True

* Replace can also take a dictionary input, or use regexes
* You can call replace() on the dataframe itself to replace ALL instances of a value
across any columns

* Boolean maps can be combined via boolean operators such as &, |, ~
* "axis=" tells apply() to operate on columns (default / 0), or rows (axis=1). When
operating on a row, all columns in the row are acessable

Taking a Sub-frame
with only rows

matching certain
conditions

You can follow up with a filter() or transform() and filter() to gte similar results to SQLs
GROUP BY … HAVING

Filtering /
Subframes

Subframe with only
selected columns

Filter a grouped DF

* replace can operate on a whole row or column, a whole dataframe, or anything in
between.

Aggregation
/ grouping

Create sums by a
grouped value -

similar to a database
GROUP BY

* Select() takes a list of boolean maps as inputs 1, and a list of replacement values as
input 2, and returns a column with values subbed in for matching rows.

